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Abstract—Online platforms displaying long streams of exam-
ples are often employed to gather labels from both experts
and crowd workers. While previous work in crowdsourcing
focused on objective tasks and estimating error parameters of
annotators, collecting labels in a subjective setting (e.g. emotion
recognition) is more complicated due to different interpretations
of examples. These interpretations could be influenced by many
factors such as annotator mood and previously seen examples. In
this work, we examine two hypotheses of order-dependent biases
in sequential labeling tasks: negatively auto-correlated sequential
decision making and positively auto-correlated affective priming.
Using controlled generation of facial expressions, we find that i)
annotators achieve higher agreement when presented examples
in the same sequential order, ii) the valence label of the current
image positively correlates with the previous labels given. While
we also observe a positive correlation between labels and the
number of preceding positive and negative images seen, this cor-
relation is highly dependent on example ordering. Our findings
demonstrate that randomized examples given to annotators may
produce systematic bias in labels. Future data collection should
present examples in orderings which mitigate such bias.

Index Terms—Affective computing, emotion recognition, com-
puter vision, crowdsourcing

I. INTRODUCTION

Building intelligent models for subjective tasks such as
sentiment analysis and emotion recognition is of interest for
downstream tasks such as news recommendations and human-
robot interaction. Techniques for aggregating opinions and
expertise to produce labels for training have been widely stud-
ied [1, 2]. Most crowdsourcing methods assume an objective
true label and infer error rates of annotators [3, 4]. However,
crowdsourcing for tasks that are subjective in nature can yield
noisy labels that arise due to a combination of annotator
error and subjectivity. For example, the facial emotion could
be perceived differently due to the mood and fatigue of
an annotator, and previous examples seen by an annotator.
Existing crowdsourcing models do not provide mechanisms
to disentangle the effect of multiple opinions from the effect
of annotator error in such tasks.

In the popular computer vision task of emotion recognition
from facial expressions, large datasets are often labeled by
few annotators [5, 6, 7]. This results in an experimental setup
where each annotator sees a long sequence of examples (e.g.
36,000 examples by 2 annotators [5]; 24, 000 examples by 2
annotators [6]). This is a sequential decision-making task that
is highly susceptible to systematic label noise. Wisdom from
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affect priming suggests that annotators may rate the valence
of a current example to be similar to that of the preceding
example [8]. Conversely, an annotator’s belief in randomness
(gambler’s fallacy or law of small numbers) may lead to
negatively auto-correlated labels even among experts [9].

Motivated by the understudied problem of crowdsourcing in
affective computing, this work investigates systematic noise in
emotion recognition labels which arise due to the subjective
nature of the task and the limited quality of crowd workers
annotations. We use a state-of-the-art generative model to
produce a set of linearly interpolated facial expressions of
various emotions. We measure the effect of example ordering
on the output label produced by annotators and find that emo-
tion annotation is dominated by affective priming rather than
gambler’s fallacy. Specifically we investigate the following
three questions in the context of annotator behavior in emotion
recognition tasks:

e QI: Is there a difference in inter-annotator agreement be-
tween a uniform sequence of images and the randomized
sequences of the same set of images?

e Q2: In randomly shuffled sequences, does the valence-
based ordering of examples relate to the valence label
produced by annotators?

o Q3: What is the effect of the valence of previous images
seen by annotators on the label annotators will give to a
current neutral image?

II. RELATED WORK
A. Affective Crowdsourcing

The aim of modeling multiple annotators is to collect the
most accurate label despite disagreement between annotators.
Crowdsourcing techniques have been applied to various af-
fective computing tasks and datasets [10, 11]. Snow et al.
[2] asked Amazon’s Mechanical Turk workers to label the
affect of news headlines. In emotional speech recognition:
Parthasarathy and Busso [12] applied preference-learning to
generate labels based on changes in emotion that annotators
agree on and Lotfian and Busso [13] formulated emotional per-
ception as a multidimensional Gaussian where each dimension
corresponds to an emotion.

Sequential ordering in crowd sourcing has rarely been
explored although assimilation and contrast effects have been
examined in social psychology [14]. Prior works have focused
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Fig. 1. Example of generated expressions at various coefficients for SADNESS to HAPPINESS variation (a) and ANGER to HAPPINESS variation (b). Both
ANGER and SADNESS are considered negative valence photos in our generated dataset

on predicting annotator error over time [15, 16]. Atcheson
et al. [17] found that perceived emotion in continuous speech
can exhibit an inherent degree of ambiguity independent
from annotator error. They further find that human ratings
for continuous emotion in speech exhibit locally smooth
properties. This benefit of prior context in improving labels
has also been demonstrated in multi-modal affective tasks
[18]. Unlike speech or video windows in continuous emotion
recognition, the sequential effects we explore do not have
inherent time-dependent properties. For example, a sequence
of positive images to be labeled can occur as a result of random
shuffling of images while a sequence of positive valence
snippets of speech occurs due to speech or video windows
being from the same utterance. While the previous information
in the same sentence serves as context for the current label
in continuous speech emotion annotations, the effect of the
previous randomly shuffled images before a current image is
usually considered noise to be eliminated.

B. Sequential Decision-Making: “Gambler’s Fallacy”

If providing labels for a sequence of examples is modeled
as a decision-making problem, previous work in behaviour
economics suggests that annotators provide negatively auto-
correlated labels due to a belief that sequences of identically
labeled examples are improbable. This phenomenon, the gam-
bler’s fallacy, occurs in decisions made by asylum judges,loan
officers, and baseball empires [9]. Unlike contrast effects, this
fallacy arises due to the immediate preceding label given rather
than due to stimuli appearing earlier in the sequence [19].
This linear auto-correlation model for observation data can be
written as:

Yi = Bo + B1Yi—1 + Controls + ;. (1)

Chen et al. [9] found that [3; is negative which allows us to
write our hypothesis of this effect as:

p(yi = ¢) < p(y; = clyi—1 = ¢) (2)

where y; is the class label of the i** example and c is a

class which examples can belong to. In the setting of labeling

affective examples, annotators may assume images appear
in random sequences. Extending to k previous images and
considering that the current example is similar to previous
examples, an annotator may decide that the x; is less likely
to be in class ¢ when x;_y ... z;_1 appear to be in class c:

p(yi = clwi) < plys = clwi, yio1, - yik =€) (3)
C. Affective Priming

A contrasting phenomena of interfacing with sequential ex-
amples is affective priming [8]. In affect labeling or perception,
a target may be more likely to be of a certain valence category
if the previous or primer example is of the same valence
category. Experiments confirming affective priming include
facial expression perception and image aesthetic perception.
In this case, the inequality in equation 4 would be reversed.

p(yi = clzi) > p(yi = c|lzi, Yi—1, ...Yi—k =€) €]

Leopold et al. [20] showed that there are robust aftereffects
of facial perception by testing facial identity recognition.
Similar work stretches beyond perception of human faces
to the perception of aesthetically pleasing images. Chang
et al. [21] performed various experiments which showed that
the preference ratings for a neutral image are influenced by
whether the previous image is a preferable or less preferable
image. Priming can be used to induce better performance
among crowd workers. Morris et al. [10] used photos with
positive affect to prime crowd workers on Amazon Mechanical
Turk to generate more creative responses. With respect to
perception of facial expressions in particular, Bouhuys et al.
[22] used music to induce depressed and elated moods and
tested whether these induced moods affect perception of faces.
They found that subjects perceived more sadness in faces
showing a preponderance of positive or negative emotions
when feeling more depressed. Prior work studying the role
of induced emotion on perception in conjunction with work
illustrating the role of affective response to facial expressions
motivates our work in investigating whether such phenomena
also occur in affective labeling tasks.



III. FACIAL EXPRESSION GENERATION

To test the effect of sequential ordering of affect labels,
ground truth images were required. However, collecting “gold-
standard” labels for existing emotion recognition datasets
would introduce biases this work is trying to address. We
thus combine recent work in style transfer using generative
adversarial networks (GAN) [23] with posed emotions from
the Karolinska Directed Emotional Faces (KDEF) dataset [24]
to generate interpolated emotional expressions. The KDEF
dataset contains 7 posed emotions from 70 Caucasian actors
and actresses. We employ style transfer of high level features
using the StyleGAN model [25]. The StyleGAN architecture
employs two latent spaces which allow the preservation of
features when linearly traversing the second order latent space.
We leverage this to generate varying degrees of each emotion
for the posed emotions set. For simplicity, we examine the
task of collecting 1-dimensional valence labels for emotion
recognition. Using HAPPINESS, SADNESS, ANGER, and NO
EMOTION poses, we find the latent space representation that
minimizes the reconstruction loss using the StyleGAN en-
coder. With the latent vectors of each emotion, we interpolate
to create [1/3, 2/3] interpolations of the emotions displayed
in the photos. This generates two variations of 7 degrees of
negative to positive valence photos: an ANGER to HAPPINESS
variation, and a SADNESS to HAPPINESS variation (Figure 1).
The images were then manually filtered for quality, leaving
64 sets of photos (i.e. photos of 64 individuals) for each
emotion category. This ensured that images containing unde-
sirable artifacts of image generation such as hair blending into
background or blurred spots were removed.

IV. EXPERIMENTS

Our objective is to closely replicate the environment anno-
tators experience when annotating large emotion recognition
datasets. Corresponding to our generated images, we provide 7
valence labels from extremely negative to extremely positive.
Figure 2 shows an example question shown to annotators.
Annotators were presented sets of 40 (36 for later sequence
experiments) images to label. Before each set of images,
participants were asked their current mood on the same scale
from extremely negative to extremely positive. After each
set of images, participants were given a 30-second break
to minimize possible affective influence from the previous
set. Participants were crowd workers hired through Amazon
Mechanical Turk (AMT) and compensated around 10 USD
per hour for tasks lasting between 7 and 20 minutes. We also
collected the demographic information (e.g. age, race, gender,
geographic location) from the crowd workers to assess the
composition of annotators since all faces in our dataset are
Caucasian. While the crowd workers were a mix of age and
genders, most participating workers responded as Caucasian
(65%), and from the United States (94%).

Experiment 1: Annotator Agreement

We first examine the role of previous images seen on
annotator agreement. We test whether randomizing the order
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Fig. 2. Example survey interface shown to annotators

of examples in emotion recognition induces a different level
of inter-annotator agreement than when all annotators see the
same examples in the same order. This is important to examine
in subjective tasks because it is difficult to disambiguate
whether annotator disagreement arises from the inherent ex-
ample ambiguity or from ordering effects.

With a set of sampled generated images, 49 annotators each
labeled 80 images (2 sets: 40 images per set) in different
orders. Each set of images contained approximately the same
ratio of HAPPINESS, SADNESS, ANGER, and NO EMOTION
poses. Half of annotators saw the first set of images in the
same order and the second set in one of 5 different orderings.
The other half of annotators saw the first set of images in one
of 5 different orderings and the second set in the same order.
Each set of 40 images took around 3-4 minutes to annotate.

To compare the disagreement of annotators between the two
orderings of the same set of images, we calculate the entropy
of the set of answers for image j as:

Hj == pj(a;)logp;(as) )
=1

where p;(a;) is the probability of answer a; for the j"
question. Here, n = 7 since there are 7 possible answers each
annotator could give for each question (Figure 2).

Figure 3 shows the difference in distribution between the
entropy of the uniformly-ordered set compared to the shuf-
fled set. The mean of the shuffled set is 1.10 while the
mean entropy of the uniformly-ordered set is 1.06. While
the difference in means is not statistically significant, figure
3 shows the distributional differences in entropy between the
two sets. We also compute the Fleiss” kappa relative to chance
agreement for each set. Confirming the entropy distribution



results, the uniformly-ordered set has a higher kappa for
annotator agreement (v = (0.250) compared to the shuffled
set (¢« = 0.219). Here, a higher kappa reflects a higher
inter-annotator agreement. As more permutations are labeled
by annotators, towards the limit of each annotator seeing a
different ordering, we would expect the entropy of answers to
increase and the Fleiss’ kappa to decrease.

Entropy of answers of shuffled and uniform order examples

—=== uniform order mean
10 - shuffled mean
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shuffled

Count

0.4 0.6 0.8 1.0 1.2 1.4
Entropy

Fig. 3. Entropy of answers in uniformly ordered set (blue) and 5-fold shuffled
set (blue). The mean entropy is indicated with dotted lines

Experiment 2: Ordering effects in Random Set

We examine what type of ordering effects exist to cause
higher entropy in amassing labels for differently ordered
examples than uniformly ordered examples. In the randomly
generated blocks, we count the number of previously seen
positive and negative images to discern whether there is a
correlation between previous images and a current label.

We limit the scope of examining order effects to the neutral
images we generated. For each neutral image, we count the
consecutive positive (e.g. P1) and consecutive negative images
(e.g. N1) which appear before it. If a neutral image appears
before the current image then P = 0. A randomly sampled set
of images most often produces sequences between N5 and P5
since the negative valence (e.g. SADNESS and ANGER ) and
positive valence (e.g. HAPPINESS) images are sampled with
equal proportion in the random blocks of images.

Figure 4 shows the scatter plot of how annotator ratings are
related to the number of previous positive or negative images
seen. There is a positive correlation, Pearson correlation of
0.194 (p < le™?), between the number of previous positive
images seen and the label given. This suggests sequences
of positive and negative images preceding neutral images,
even ordered randomly, may prime annotators to select similar
labels for these neutral images.

This positive correlation result could be influenced by the
specific ordering of this particular block of images sampled
and used for the experiment. For example, the “more positive”
neutral images may follow longer sequences of positive images
by chance. To address this potential short coming, we used
five-fold shuffled versions of the images to check whether
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Fig. 4. Plot of the number of previous positive (P) and negative (N) images vs
annotator ratings of neutral images (NO EMOTION) for the set A permutation
A. The size of the markers represent frequency that the label was selected

this effect is consistent across all five folds. We also added
a second set of randomly sampled images shuffled across
five-folds. Table I shows the various correlation coefficients
across the various permutations of the images across two sets
of images. This table illustrates that varying the set of P
(number of positive/negative images preceding the example)
and the position of individual images has a large effect on the
correlation results. In 40% of these randomly-sampled sets and
randomly-shuffled permutations, there are statistically signifi-
cant correlations between the number of previous negative or
positive examples seen and the resulting label.

TABLE I
PEARSON CORRELATION 5 ORDER PERMUTATIONS FOR EACH SET OF
RANDOMLY SAMPLED IMAGES

Set A Images Set B Images
Permutation | Pearson Corr. | P-Value | Pearson Corr. | P-Value
a 0.194 0.001 0.030 0.764
b 0.329 0.020 0.198 0.030
c 0.332 0.019 -0.182 0.071
d 0.022 0.877 -0.057 0.577
e 0.170 0.194 -0.191 0.057

Examining the specific set of neutral images from which
Table I was derived, the mean valence rating of these images
ranged from 3.42 — 4.92. This large variation in the perceived
valence of neutral images suggests the need to compare this
effect of preceding images on the same neutral image.

For each neutral image, we find the number of preceding
negative and positive images across all folds of the experiment.
Using the resulting label and the number of preceding positive
images, we again compute the correlation between the two.
However, due to the small sample set (15 < n < 25), the
correlation values lacked statistical significance. In addition,
some images only include negative preceding images or only
positive preceding images due to the random shuffling of the
image order in the original design of the experiment.



Experiment 3: Ordering effects in Controlled Set

To isolate the effect of varying lengths of positive and
negative image sequences preceding the same neutral image,
we use an alternative experimental design. In this design, each
annotator is presented with 5 blocks of images to annotate.
2 of these 5 are random blocks in which an evenly mixed
number of HAPPINESS, SADNESS, ANGER, and NO EMOTION
poses are randomly shuffled. The other three blocks are pairs
of alternating blocks in which version A displays k positive
images preceding a neutral image while version B presents &
negative images preceding a neutral image. Figure 5 illustrates
the experimental set up. This configuration allows us to collect
two sets of labels for the same neutral image: one set after an
annotator has seen a negative sequence of images and one set
after an annotator has seen a positive sequence of images. We
also vary k, the number of negative/positive images preceding
neutral images, from k =2 to k = 4.

Version A

Neutral

,/ Neutral

Positive images

Version B Negative images

Neutral

,/ Neutral

Negative images

Positive images

Fig. 5. Experimental design of controlled set of images. Version A presents
k positive images before the first neutral image and k£ negative images before
the second neutral image and so on. Version B prevents an inverted version.

1) Effect of previous image: We first examine whether a
neutral image label is related to the previous image. The
previous image label, should be similar to, but may be different
from, the actual ground truth valence of the image. The ground
truth valence is based on the parameter used to generate the
image with StyleGAN (see Section III). Table II shows the
linear correlation of image labels with the previous image
label and the previous image ground truth valence. For all
values of k, we observe a positive correlation with the previous
label given. This again supports the hypothesis that decision-
making in the context of emotion labeling can be susceptible to
affective priming. The correlation with the actual ground truth
valence is mostly positive but not statistically significant. This
suggests that the current label an annotator provides is more
correlated with the label they gave to the immediate preceding
image (perceived valence) than with the ground truth valence.

TABLE 11
PEARSON CORRELATION BETWEEN CURRENT LABEL AND 1) PREVIOUS
LABEL, 11) PREVIOUS VALENCE USED TO GENERATE IMAGE. THE
STATICALLY SIGNIFICANT VALUES (P < 0.05) ARE BOLDED

k-length | Corr. with prev. label | Corr. with prev. valence
k=2 0.115 0.180
k=3 0.063 -0.01
k=4 0.125 0.116

2) Effect of previous sequence of positive and negative
images: Collecting responses for both conditions in Figure
5, we can compare whether there are differences between the
negative and positive conditioning on the labels for the same
neutral image. For example we can compare the mean between
the two conditions for image j: Pr; = --— > icpos Tij for
neutral image labels in the positive condition, and Nx; =
%eg > ieneg Tij for the neutral image labels in the negative
condition. Table IIl summarizes the percentage of positive,
negative, and zero-valued difference images across different
values of k. Here, most images exhibit a higher mean label
value after the positive priming condition than the negative
priming condition. This again supports the positive auto-
correlation phenomenon from affective priming. Applying the
t-test for difference in valence means across each image
example with Bonferroni correction does not yield statistically
significant results for any image. This could be due to a small
sample size (i.e. 10 responses for each condition) and the
limited number of values annotators could select for each
image since we discretized valence labels (i.e. 1, 2, ... 7).

TABLE III
PERCENTAGE OF IMAGES FOR EACH k WHERE THE DIFFERENCE BETWEEN
THE POSITIVE (Px;) AND NEGATIVE (/N ;) CONDITIONS ARE GREATER
THAN, LESS THAN, AND EQUAL TO ZERO.

k-length | Pz; — Nz; <0 Px; — Nz; =0 | Pr; — Nz; >0
k=2 30.95% 11.90 % 57.14%
k=3 43.33% 6.67 % 50.00%
k=4 37.50 % 4.17 % 58.33%

The images which generate negative differences between
the Pz and Nz conditions are fairly consistent across the
different lengths of k. For example, the same neutral image
will take a higher mean valence after negative images than
after positive images across for k = 2,3,4. This suggests
that there are features inherent to the displayed images that
may obfuscate the positively auto-correlated effect observed in
earlier experiments. Figure 6a illustrates an example where the
label after a positive sequence (i.e. Px condition) of images is
consistently more positive than the mean image label after a
negative sequence (i.e. Nx condition) of images (i.e. affective
priming effect). Figure 6b illustrates an example where the
opposite is true. Here, contrast effects may dominate the labels
in the two conditions; the 4" image in the first row looks more
negative compared to the first three images in the first row than
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Fig. 6. Example of Px and Nz sequences (k = 3): a) a neutral image which consistently generates higher valence labels after sequences of positive images
than after sequences of negative images. b) neutral image generating higher valence after sequences of negative images than sequences of positive images

compared to the first three images in the second row.

V. DISCUSSION
Q1: Inter-annotator agreement

Comparing entropy and Fleiss’ kappa, a set of shuffled
sequences of examples seen by annotators yields lower inter-
annotator agreement than a uniformly ordered sequence of
examples. This result confirms and complements recent work
finding that annotators produce different labels for examples
in context than in randomized examples [26].

Q2: Example ordering in randomly shuffled sequences

To investigate systematic biases in labels due to example
ordering, we tested correlation between the number of posi-
tive/negative images appearing before a neutral example and
the label an annotator gives to the neutral example. We find
significant correlation, supporting the hypothesis that affect
priming from sequences of negative/positive valence images
produces positive auto-correlation in examples. In large scale
data labeling tasks, these sequences of images that appear due
to random shuffling of examples may inadvertently introduce
bias into the image labels. We test the robustness of this finding
by shuffling two sets of images so that the same image follows
sequences varying in length and valence. We observe that
auto-correlation of an image set can vary drastically across
different orderings. Since only limited few orderings are shown
to annotators in a typical labeling task, the resultant labels can
contain bias due to unintentional affective priming effects.

Q3: Effect of previous images on current image label

In our controlled experiment, annotators are assigned to
randomized conditions of positive/negative image sequences
preceding neutral images. We find significant correlation be-
tween the current label of neutral images and the previous
label given. The mean label for a neutral image is mostly
higher following positive sequences than negative sequences.
However, there is a portion of images that consistently exhibit

the opposite effect. This result suggests that only looking at the
labels is not sufficient for completely characterizing sequential
effects. Qualities inherent to a specific image (i.e. emotion
ambiguity, facial structure) may influence the resulting label
more than any ordering effects. While we find evidence
to support affective priming in sequential labeling of facial
images, there may also be other potent effects such as instance-
dependent assimilation and contrast effects [14].

VI. CONCLUSION

In practice, long sequences of images are frequently ran-
domized and given to very few annotators for annotation. In
this work, we find that some orderings of randomly shuffled
sequences of images may significantly bias annotator labels.
We find evidence to support positive auto-correlation between
labels; an effect consistent with affect priming rather than the
Gambler’s fallacy. This effect is important to consider when
reducing systematic label noise in subjective labeling tasks.
Thus, randomizing sequences of images for labeling may be
inadequate to remove annotator bias.

Future data collection in affective computing tasks would
benefit from collecting both annotation order and annota-
tor information. Assigning multiple annotators to each of
several orderings of examples would better allow analysis
of sequential effects than randomizing orderings across all
annotators. Furthermore, intentionally ordering examples to
mitigate affective priming may reduce the risk of systematic
biases in labels and limit the source of label noise to inherent
example ambiguity. Future work to understand sequential ef-
fects in affective computing should include features of specific
examples which could better encapsulate instance-dependent
noise. Stratified sampling according to characteristics such as
race, gender, and facial features would help further examine
the presence of affect priming and contrast effects.
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